By: Sharleen Khan Jr., Prem Kishore S Sr, Akhilesh Singh, Sharleen Khan, Prem S. Kishore
Cardiovascular diseases (CVDs) remain the leading cause of morbidity and mortality worldwide despite advances in medical research and therapeutics. Emerging evidence suggests a significant role of the gut-brain axis, a complex communication network involving the gut microbiota, central nervous system, and cardiovascular system, in modulating cardiovascular health. The gut microbiota influences systemic inflammation, neurohumoral pathways, and metabolic processes, which are critical in the pathogenesis of CVD. Dysbiosis, or an imbalance in the gut microbiota, has been implicated in various cardiovascular conditions, including hypertension, atherosclerosis, and heart failure. This comprehensive review aims to elucidate the intricate relationship between the gut microbiome, brain, and cardiovascular system, highlighting the mechanisms by which gut-derived signals affect cardiovascular function. Key microbial metabolites, such as short-chain fatty acids (SCFAs) and trimethylamine N-oxide (TMAO), and their impact on vascular health and blood pressure regulation are discussed. Furthermore, the review explores potential therapeutic strategies targeting the gut-brain axis, including probiotics, prebiotics, dietary modifications, and pharmacological interventions, to improve cardiovascular outcomes. Despite promising findings, the field faces challenges such as individual variability in microbiome composition, complexities in gut-brain interactions, and the need for robust clinical trials to establish causality. Addressing these challenges through interdisciplinary research could pave the way for innovative, personalized therapeutic approaches. This review provides a comprehensive understanding of the gut-brain-cardiovascular axis, underscoring its potential as a novel target for preventing and treating CVD.