By: Yan Li, Xingli Li, Wenlin Li
In this work, we propose an all-optical stroboscopic scheme to simulate an open quantum system. By incorporating the tritter, consisting of a group of beam splitters, we find the emergence of spontaneous antiphase synchronization in the steady state. To better understand the synchronization and entanglement properties within the system, we utilize the relative error measure and find the distribution of logarithmic negativity in parameter space shows similar structures with the results of synchronization measure. Finally, we derive the adjoint master equation corresponding to the system when the synchronization condition is satisfied and explain the existence of oscillations. In addition, we explore the effect of non-Markovianity on synchronization, and we find that it only slows down the time for the system to reach the steady state but does not change the synchronization properties of the steady state. Our work provides a promising scheme for experimental studies focused on synchronization and other nonequilibrium steady states.