By: Mohammad Reza, William, Bahram, Mohammad Muntasir, William L., Rahman
Seismocardiography (SCG) is a technique that non-invasively measures the chest wall’s local vibrations caused by the heart’s mechanical activity. Traditionally, SCG signals have been recorded using accelerometers placed at a single location on the chest wall. This study presents an innovative, cost-effective SCG method that utilizes standard smartphone videos to capture data from multiple chest locations. The analysis of vibrations from multiple points can offer a more thorough understanding of the heart’s mechanical activity compared to signals obtained solely from a single chest location. Our approach employs computer vision and deep learning techniques to extract and improve the resolution of multichannel SCG maps obtained by video capture of chest movement. We attached a grid of patterned stickers to the chest surface and recorded videos of chest movements during different respiratory phases. Using a deep learning-based object detector and a template tracking method, we tracked the stickers across video frames and extracted the corresponding SCG signals from sticker displacements. We also developed a robust algorithm to estimate heart rate (HR) from these chest videos and identify the optimal chest location for HR estimation. The method was tested on 28 chest videos captured from 14 healthy participants. The results demonstrated that our method effectively extracted multichannel SCG maps and enhanced their resolution with a mean squared error of 0.1078 and 0.0418 for right-to-left and head-to-foot SCG signals, respectively. We observed intersubject chest vibration patterns corresponding to cardiac events including opening and closure of the heart valves. Moreover, our algorithm accurately estimated HR from 1968 SCG signals extracted from the videos compared to the gold-standard HR measured from each subject’s electrocardiogram (bias ± 1.96 SD = 0.04 ± 2.14 bpm; r = 0.99, p < 0.001). The findings from this study underscore the potential of our approach in developing a cardiac monitoring tool using a smartphone that would be widely accessible to the general public and might provide more timely detection of diseases.